This is ACA # 22. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. <u>Click here</u> to show a set of five ACA22 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

1. Write the formula of the salt formed when the following acid and base react. Indicate the acid/base properties of a solution of the salt as either neutral, greater than 7, or less than 7.

Acid	Base	Formula of the salt	Acid base properties		
HNO ₃	кон	KNO3 90% KNO3	neutral 76% neutral		
HCI	NH ₃	NH4Cl 76% NH4Cl	acidic	NH3CI	10%
HC ₃ H ₅ O ₂	NaOH	NaC3H5O2 90% NaC3H5O2	basic <i>90%</i> basic pH > 7		
HBr	C ₆ H ₅ NH ₂	C6H5NH3Br 57% C ₆ H ₅ NH ₃ Br	acidic 81% acidic pH < 7		

2. For each of the following salts indicate the formula of the anion and the cation in the salt, the formula of the acid and base that had to react to form the salt. Indicate the acid/base properties of a solution of the salt as either neutral, greater than 7, or less than 7. For example:

KCN is a salt: the cation is K^+ : the anion is CN^- . The acid and base that reacted to form the salt are HCN (a weak acid) and KOH (a strong base). Since K^+ comes from a strong base, K^+ will not effect the pH of the solution. The anion CN^- come from a weak acid, and therefore can effect the pH of the solution. Since CN^- is the conjugate base of HCN, it is basic and the pH of the solution will be greater than 7.

Formula of the salt	Cation	Anion	Acid	Base	Acid base properties
KCN	K+	CN-	HCN	KOH	pH is greater than 7

Complete the following table for the two salts.

Formula of the salt	Cation	Anion	Acid	Base	Acid base properties of the salt
KCIO	K^+ %%	ClO^- 98% ClO ⁻	HCIO 90% HCIO	КОН <i>95%</i> КОН	basic 76% basic pH > 7
CH3NH3NO3	CH3NH3^+ 67% CH ₃ NH ₃ +	NO3^- 87% NO3 ⁻	HNO3 87% HNO3	CH3NH2 50% CH ₃ NH ₂	acidic 82% acidic pH < 7

3. Based on the acid base properties you assigned to KCIO and $CH_3NH_3NO_3$ write the balanced chemical equation that describes the acid base character of the ion that controls the pH of the solution. For the example in Q2 we had concluded that CN^- controls the pH of the solution, so we can write a chemical equation that describes how CN^- behaves as a base.

$$CN^- + H_2O \rightleftharpoons HCN + OH^-$$

Write the chemical equation for each salt from Q2:

KClO

```
CIO^{-}(aq) + H2O(l) -->HCIO(aq) + OH^{-}(aq)
```

```
\text{ClO}^- + \text{H}_2\text{O} \rightleftharpoons \text{HOCl} + \text{OH}^- \quad \mathcal{C}\mathcal{A}^{\prime\prime}_{\prime\prime}
```

Because K⁺ comes from a strong base it will not effect the pH of the solution so we can neglect it.

CH₃NH₃NO₃

```
CH3NH3<sup>+</sup>(aq) + H2O(l) --> CH3NH2(aq) + H3O<sup>+</sup>(aq)
```

 $CH_3NH_3^+ + H_2O \rightleftharpoons CH_3NH_2 + H_3O^+ \quad 52^{\circ}/_{\circ}$

Because NO₃⁻ comes from a strong acid it will not effect the pH of the solution so we can neglect it.

4. Calculate the pH of a 0.100 M KClO solution. (NOTE: K_a (HClO) = 3.0 x 10⁻⁸)

Here is a *table of equilibrium constants* to help answer this question.)

pH == 10.26 38%

We need to setup the ICE table for this dissociation:

	ClO-	+ H ₂ O	-	HOCI	+ OH ⁻
Initial	0.100 M			~0	0
Change	- X			+ x	+ x
Equilibrium	0.100 - x			0 + x	0 + x

 $K_b = K_w/K_a(HClO) = 1.0 \times 10^{-14}/3.0 \times 10^{-8} = [HOCl][OH^-]/[ClO^-]$

 $3.3 \ge 10^{-7} = (x)(x)/(0.100 - x)$

Assume x <<<< 0.100 M because K_b is very small compared to the initial concentration of the weak acid. So 0.100 - x reduces to 0.100 because x is so small compared to 0.100.

 $3.3 \ge 10^{-7} = (x)(x)/(0.100)$ $3.3 \ge 10^{-8} = x^2$

 $x = 1.8 \times 10^{-4} M = [OH^-]$

 $pOH = -log [OH^-]$

 $pOH = -log (1.8 \times 10^{-3}) = 3.74$

pH = 14 - pOH = 14 - 3.74 = 10.26

5. Calculate the pH of a 0.100 M CH₃NH₃NO₃ solution. (NOTE: Here is a <u>table of equilibrium constants</u> to help answer this question.)

pH = 5.82 38%

We need to setup the ICE table for this dissociation:+ $H_2O \rightleftharpoons CH_3NH_2 + H_3O^+$

	CH ₃ NH ₃ ⁺	+ H ₂ O	-	CH ₃ NH ₂	+ H ₃ O ⁺
Initial	0.100 M			~0	0
Change	- X			+ x	+ x
Equilibrium	0.100 - x			0 + x	0 + x

 $K_a = K_w/K_b(CH_3NH_2) = 1.0 \times 10^{-14}/4.4 \times 10^{-4} = [CH_3NH_2][H_3O^+]/[CH_3NH_3^+]$

 $2.3 \times 10^{-11} = (x)(x)/(0.100 - x)$

Assume x <<<< 0.100 M because K_a is very small compared to the initial concentration of the weak acid. So 0.100 - x reduces to 0.100 because x is so small compared to 0.100.

 $2.3 \times 10^{-11} = (x)(x)/(0.100)$

 $2.3 \ge 10^{-12} = x^2$

 $x = 1.5 \times 10^{-6} M = [H_3O^+]$

 $pH = -log [H_3O^+]$

 $pH = -log (1.5 \times 10^{-6}) = 5.82$

6. Is there anything about the questions that you feel you do not understand? List your concerns/questions.

nothing

7. If there is one question you would like to have answered in lecture, what would that question be?

nothing